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Abstract

This paper reports the direct microchannel circular dichroism (CD) measurement method for analyzing conformational changes and orientations
of macromolecules in a microchannel flow. CD is a sensitive probe for secondary structure. For that reason, we apply direct CD measurement for
microchannels. Herein, we conducted the direct microchannel CD measurement method by devising an optical system in the sample chamber.
Furthermore, using this CD microchannel measurement method, we studied conformational changes and orientations of long-strand DNA in an

elongational flow.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Macromolecule dynamics are of central interest in chemistry
and biochemistry [1]. Conformations of polymer molecules,
such as DNA strands, are typically studied in various kinds of
flow [1-10]. It has been confirmed both theoretically and exper-
imentally that DNA strands, which form a coiled state in a bulk
solution, stretch or form various shapes in shear [1,2], elonga-
tional [4-8] and laminar flows [9,10]. In particular, elongational
flow provides comparatively simple and complete stretching of
polymer molecules. In addition to these reports, conformational
control of macromolecules in a flow state has been studied. One
example is efficient hybridization by stretching DNA strands
[8-10].

Moreover, aside from DNA, it has been reported that the reac-
tion rate of some enzymes using microreactors is higher than
that for bulk scale enzymatic reactions [11-13]. However, the
acceleration mechanism remains unclear. Similarly to studies
of DNA, theoretical studies of conformational changes in fluid
are applicable to most macromolecules, including enzymes and
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proteins [1-10]. Circular dichroism (CD) is a sensitive probe for
secondary structure. Henceforth, we address direct CD measure-
ment to elucidate conformational changes of macromolecules
in a microchannel flow. Microchannel CD measurement, how-
ever, must confront difficulties in measurement because of the
lack of light. Herein, we conducted the direct microchannel
CD measurement method by devising an optical system in
the sample chamber. Furthermore, using this CD microchan-
nel measurement method, we studied conformational changes
and orientations of long-strand DNA in an elongational flow.

2. Experimental
2.1. Microchannel-type flow cell

Fig. 1 shows the microchannels’ designed and developed
schematic composition, procedures, and velocity distributions.
Fluid in a tapering microchannel follows an elongational flow.
In a reverse-tapering microchannel, it follows a shortened flow.
In the resultant velocity-gradient flow field, polymer molecules
such as DNA are deformed by different directional strain rates.
In the elongational flow, the extensional strain rates are intro-
duced to stretch polymer molecules. DNA strands, which form
a coiled state in a non-flowing (bulk) state, have been confirmed
both theoretically and experimentally to stretch and orient them-
selves in an elongational flow [3-8]. In contrast, such stretching
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Fig. 1. Schematic showing composition, procedure, velocity distributions and
DNA molecule behavior in tapering microchannels, along with component parts
and arrangement in the sample chamber of the spectropolarimeter.

and orientation hardly occur in shortened flow; consequently,
the polymer molecule remains in a coiled state.

2.2. Apparatus, chemicals and conditions

We measured CD spectra using a spectropolarimeter (J-820;
Jasco Inc., Japan). Fig. 1 shows the arrangement of two lenses in
a sample chamber to obtain parallel-luminous flux. An intelli-
gent pump (PU-2080i; Jasco Inc., Japan) controlled all injections
of solutions into the tapering flow cell (optical pass length: 5 mm,
volume 44 pl). All measurements were carried out at 23 °C. Two
aqueous solutions were prepared: (0.1 mM phosphate buffer (pH
7.0) and 0.1 mM NaCl) and (1 mM phosphate buffer (pH 7.0)
and 1 mM NaCl) of 58 M (per base pair) T4 GT7 DNA (Nippon
Gene Co. Ltd., Japan).

3. Results and discussions

Fig. 2 shows CD spectra of DNA in non-flow and flow states
(flow rate: 1 and 30 ml/min). Fig. 2a and b depict CD spec-
tra measured in the same solution condition (0.1 mM phosphate
buffer and 0.1 mM NaCl). Fig. 2a presents CD spectra of DNA
in an elongational flow whereas Fig. 2b gives the measure-
ment for a shortened flow. Fig. 2a shows no change in CD
spectra observed between 0 and 1 ml/min. A gradual change
in the CD spectra was observed upon increasing the flow rate
beyond 1 ml/min. In this study, we confirmed the change in
CD spectra from 1 to 30 ml/min, however, such change became
gradual with higher flow rate. In an elongational flow, DNA
strands overcome the tendency to be in the coiled state; the
DNA strands stretch beyond a specific flow rate [3—14]. Results
presented in Fig. 2a agree with this phenomenon. In contrast,
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Fig. 2. Schematic CD spectra of T4 GT7 DNA solutions using a tapering
microchannel flow cell under three conditions: (a) elongational flow, 0.1 mM
phosphate buffer and 0.1 mM NaCl; (b) shortened flow, 0.1 mM phosphate buffer
and 0.1 mM NaCl; (c) elongational flow, I mM phosphate buffer and 1 mM NaCl.
Three kinds of flow speed were measured: 0 ml/min (non-flowing state), 1 and
30 ml/min.

no spectral changes were observed at any flow rate in a short-
ened flow (Fig. 2b): DNA strands do not stretch in a shortened
flow.

On the other hand, a preparation of DNA in 1 mM phosphate
buffer and 1 mM NaCl solution subjected to an elongational
flow at different flow rates showed no change in CD spectra
(Fig. 2c). This result indicates that DNA strands do not stretch in
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Fig. 3. Schematic explanation of CD spectra changes in elongational flow. (a) Electronic transitions of the bases are vertical to the helix axis at stretched and oriented
states in elongational flow; in contrast, they are no discernible pattern in the coiled state. (b) At a stretched and oriented state, only those consistent in the helix-axis

direction of electronic transition are not canceled out.

higher buffer and salt conditions. Stronger and smaller conden-
sation of polyelectrolyte molecules, such as DNA, is engendered
by higher salt concentration [15]. Our result in Fig. 2c shows
agreement with this polymer behavior.

One of our experiments confirmed that changes in CD spec-
tra occurred neither for chiral amino acid monomer nor in a
buffer solution in microchannel elongational flow at flow rates
of 0-30 ml/min (data not shown), implying that spectral changes
result from the optical strain of the flow cell window that is
related to a flow-rate increment. We also confirmed that no spec-
tral changes occurred for any length of inner diameter tubes
between the pump and flow cell, implying that the measured
CD spectral changes reflect DNA conformational changes only
in the flow cell.

Fig. 3 explains why changes in CD spectra occur upon stretch-
ing and orientation of DNA molecules. Phosphate groups in
the DNA have electronic transitions only at wavelengths that
are shorter than 170 nm. Deoxyribose shows low-intensity elec-
tronic absorption bands that begin at about 190 nm. Electronic
transitions of DNA at 200-300 nm, the spectrum accessible
region, are exclusively attributable to transitions of the planar
purine and pyrimidine bases. All are polarized in the base plane,
that is, vertical to the helix axis [16]. With coiled DNA in a
non-flowing (bulk) state, the directions of all helix axes are
no discernible pattern. In contrast, with stretched and oriented
DNAs in an elongational flow, most helix axes are oriented in
the flow direction (Fig. 3a). In this case, only those that are
consistent in the helix axis direction of electronic transition
are not cancelled (Fig. 3b). For that reason, the CD spectra
change.

4. Conclusion

We have studied the direct microchannel CD measurement
method and conformational changes and orientations of long-
strand DNA in an elongational flow. Such microchannel CD
measurement method might be useful for analyzing mechanisms
of microchannel chemical reactions, particularly those reactions
that involve conformation as an important factor for reactivity,
such as enzymatic reactions.
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